ECE 321C **Electronic Circuits** Lec. 1: Introduction and Basic Concepts Instructor **Dr. Maher Abdelrasoul** http://www.bu.edu.eg/staff/mahersalem3

Course Information

Instructor:	Dr. Maher Abdelrasoul
Lectures:	Thursday : 12:30 -2:55
Office Hours:	Sunday : 10:30-12:30
Teaching Assistant:	Eng. Crestina
Text Book:	R. Boylestad, Electronic Devices and Circuit Theory, 11th edition, Prentice Hall
Credit:	125 Marks
Grading:	 Final Exam (80 Marks) Mid Term Exam (20 Marks) Homework and tutorials activities (15 Marks) Project (10 Marks)

Course Objectives

• Understand the transistor biasing, modeling, and its small signal analysis.

• Analyze the transistor circuits at low, medium and high frequencies and study its frequency response using bode plots.

• Explain the operation of tuned amplifiers and power amplifiers.

Transistor Development

• Moore's law predicts that the transistor count of an integrated circuit will double every 2 years.

Transistor Construction

• The transistor is a three-layer semiconductor device consisting of either two *n*- and one *p*-type layers of material (npn transistor) or two *p*- and one *n*-type layers of material (pnp transistor).

Transistor Operation

• The operation discussed in pnp transistor

One p-n junction of a transistor is reverse-biased,

whereas the other is forward-biased

• The collector current by Kirchhoff's law

$$I_E = I_C + I_B$$
$$I_C = I_{C_{\text{majority}}} + I_{CO_{\text{minority}}}$$

Transistor Configurations

Common-Common-Common-BaseEmitterCollectorConfigurationConfigurationConfiguration

1. Common-Base Configuration (1)

• The common-base terminology is derived from the fact that the base is common to both the input and output sides of the configuration.

pnp

1. Common-Base Configuration (2)

Output or collector characteristics for a common-base transistor amplifier.

1. Common-Base Configuration (3)

• Biasing of a CB pnp tr. in the active region:

In the active region the base–emitter junction is forward-biased, whereas the collector–base junction is reverse-biased.

2. Common-Emitter Configuration (1)

 It is called the *common-emitter configuration* because the emitter is common to both the input and output terminals (in this case common to both the base and collector terminals).

2. Common-Emitter Configuration (2)

2. Common-Emitter Configuration (3)

• Biasing of a CE npn tr. in the active region:

In the active region of a common-emitter amplifier, the base–emitter junction is forward-biased, whereas the collector–base junction is reverse-biased.

3. Common-Collector Configuration (1)

 The common-collector configuration is used primarily for impedancematching purposes since it has a high input impedance and low output impedance, opposite to that of the common-base and common emitter configurations.

3. Common-Collector Configuration (2)

• Limits of operation

Defining the linear (undistorted) region of operation for a transistor

Transistor Configuration Sheet

• Since the specification sheet is the communication link between the manufacturer and user, it is particularly important that the information provided be recognized and correctly understood.

OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) $(I_C = 1.0 \text{ mAdc}, I_E = 0)$	V _{(BR)CEO}	30		Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	40		Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V(BR)EBO	5.0	-	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	50	nAdc
Emitter Cutoff Current $(V_{BE} = 3.0 \text{ Vdc}, I_C = 0)$	IEBO	-	50	nAdc
ON CHARACTERISTICS				
DC Current Gain(1) $(I_C = 2.0 \text{ mAde}, V_{CE} = 1.0 \text{ Vde})$ $(I_C = 50 \text{ mAde}, V_{CE} = 1.0 \text{ Vde})$	h _{FE}	50 25	150 -	-
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{CE(sat)}	-	0.3	Vdc
Base-Emitter Saturation Voltage(1) ($I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc}$)	V _{BE(sat)}	-	0.95	Vde

Small-Signal Current Gain	híe	50	200	-
$(1_{\rm C} = 2.0 \text{ mAde}, v_{\rm CE} = 10 \text{ vde}, t = 1.0 \text{ kHz})$				

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current - Continuous	I _C	200	mAdc
Total Device Dissipation @ TA = 25*C	PD	625	mW
Derate above 25°C		5.0	mW*C
Operating and Storage Junction	Tj,Tstg	-55 to +150	*C
Temperature Range			

Limits of Operation $7.5 \ \mu A \leq I_C \leq 200 \ mA$ $0.3 \ V \leq V_{CE} \leq 30 \ V$ $V_{CE}I_C \leq 650 \ mW$

17

Transistor Testing

1. Curve Tracer

Curve tracer response to 2N3904 npn transistor.

2. Transistor Testers

Transistor Casing and Terminal Identification

• Casing

Various types of general-purpose or switching transistors: (a) low power; (b) medium power; (c) medium to high power.

• Terminal Identification

Type Q2T2905 Texas Instruments quad pnp silicon transistor

